15 | 0 | 18 |
下载次数 | 被引频次 | 阅读次数 |
目的 探讨基于超声与动态对比增强MRI(DCE-MRI)结合机器学习算法构建的预测模型,在良恶性乳腺肿瘤鉴别中的价值。方法 回顾性分析我院2019年8月—2024年5月行乳腺超声及DCE-MRI检查的348例女性乳腺肿瘤患者临床及影像资料(经伦理批准,排除42例后入组),根据病理结果分为良性乳腺肿瘤组(BBTG)(n=156)和恶性乳腺肿瘤组(MBTG)(n=192),按7∶3分为训练集(n=243)和测试集(n=105)。提取超声与DCE-MRI的定性及定量特征,经最小绝对收缩和选择算子(LASSO)-Logistic回归筛选特征后,通过DeLong检验比较联合诊断与单一诊断效能,构建决策树、随机森林、极限梯度提升(XGB)等7种机器学习分类器。通过独立测试集评估模型性能,采用沙普利加和解释(SHAP)值解释最优模型。结果 训练集中,BBTG与MBTG在DCE-MRI药代动力学参数[容积转运常数(Ktrans)、速率常数(Kep)、血管外细胞外容积分数(Ve)]、病灶形态、钙化、纵横比、形状、边缘、内部强化、时间-信号强度曲线(TIC)类型及乳腺影像报告和数据系统分级等方面差异有统计学意义(P<0.05)。LASSO-Logistic回归筛选出纵横比、形状、Kep、Ktrans、边缘、TIC曲线6个独立预测因子(P<0.05)。DeLong检验结果显示,超声与DCE-MRI联合诊断的效能最佳。7种模型中,XGB模型性能最优,训练集与测试集曲线下面积分别为0.983和0.978,敏感度、特异度均优于其他模型,决策曲线显示其分别在0.20~1.00和0.22~0.92阈值内临床净收益最高。SHAP分析提示边缘清晰、形状圆形/类圆、高Kep值、低Ktrans降低恶性风险,纵横比大于1、TIC曲线Ⅲ型增加恶性风险。结论 联合超声与DCE-MRI特征的XGB模型可有效提升良恶性乳腺肿瘤的鉴别效能,具有临床应用潜力。
Abstract:Objective To explore the value of a predictive model constructed by combining ultrasound( US) and dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI) with machine learning algorithms in distinguishing benign from malignant breast tumors. Methods A retrospective analysis was conducted on the clinical and imaging data of 348 women with breast diseases, who underwent breast US and DCE-MRI in our hospital from August 2019 to May 2024. According to pathological results,the patients were divided into benign(156) and malignant(192) breast tumor groups(BTG). They were further divided into a training set(n=243) and a test set(n=105) at a ratio of 7∶3. Qualitative and quantitative features from US and DCE-MRI were extracted. After feature selection via least absolute shrinkage and selection operator(LASSO)-logistic regression, the diagnostic efficacy of combined diagnosis and single-modality diagnosis was compared using the DeLong test. Seven machine learning classifiers including decision tree, random forest, and extreme gradient boosting(XGB) were constructed. The performance of the models was evaluated using the independent test set, and the optimal model was interpreted using Shapley Additive Explanations(SHAP) values. Results In the training set, there were significant differences between benign and malignant BTG in DCE-MRI pharmacokinetic parameters including volume transfer constant(Ktrans), rate constant(Kep), and extravascular extracellular volume fraction(Ve), lesion morphology, calcification,aspect ratio, as well as shape, margin, internal enhancement, time-signal intensity curve( TIC) type, and Breast Imaging Reporting and Data System classification(all P<0.05). LASSO-logistic regression screened out 6 independent predictors including aspect ratio,shape, Kep, Ktrans, margin, and TIC curve(all P<0.05). The DeLong test showed that the combined diagnosis of US and DCE-MRI had the best efficacy. Among the 7 models, the XGB model performed optimally with area under receiver operating characteristic curves of 0.983 in the training set and 0.978 in the test set. Its diagnostic sensitivity and specificity were superior to other models. The decision curve showed that it had the highest clinical net benefit within the thresholds of 0.20-1.00 in the training set and0.22-0.92 in the test set. SHAP analysis suggests that clear margins, round/quasi-round shape, high Kepvalue, and low Ktransreduce the likelihood of malignancy whereas an aspect ratio >1 and type Ⅲ TIC increase the likelihood of malignancy. Conclusion The XGB model integrating US and DCE-MRI features improves the efficacy of distinguishing benign from malignant breast tumors.
[1]BARZAMAN K,KARAMI J,ZAREI Z,et al.Breast cancer:biology,biomarkers,and treatments[J].Int Immunopharmacol,2020,84:106535.
[2]陈雨薇,李慧,王才善.超声弹性成像与超声造影对乳腺癌的诊断效能及其与免疫组织化学指标的相关性[J].临床与病理杂志,2022,42(10):2420-2426.
[3]KATSURA C,OGUNMWONYI I,KANKAM H K,et al.Breast cancer:presentation,investigation and management[J].Br J Hosp Med,2022,83(2):1-7.
[4]YIN L,WEI X,ZHANG Q,et al.Multimodal ultrasound assessment of mass and non-mass enhancements by MRI:diagnostic accuracy in idiopathic granulomatous mastitis and breast cancer[J].Breast,2024,78:103797.
[5]LIU X M,ZHANG J,ZHOU J J,et al.Multi-modality radiomics nomogram based on DCE-MRI and ultrasound images for benign and malignant breast lesion classification[J].Front Oncol,2022,12:992509.
[6] PARK A Y,SEO B K,HAN M R.Breast ultrasound microvascular imaging and radiogenomics[J].Korean J Radiol,2021,22(5):677-687.
[7]Ontario Health(Quality).Supplemental screening as an adjunct to mammography for breast cancer screening in people with dense breasts:a health technology assessment[J].Ont Health Technol Assess Ser,2023,23(9):1-293.
[8]THAWANI R,GAO L,MOHINANI A,et al.Quantitative DCE-MRI prediction of breast cancer recurrence following neoadjuvant chemotherapy:a preliminary study[J].BMC Med Imaging,2022,22(1):182.
[9]熊益敏,卜学勇,张洁,等.乳腺DCE-MRI定量和半定量参数、ADC值与良恶性肿瘤的关系[J].影像诊断与介入放射学,2023,32(3):176-181.
[10]WITOWSKI J,HEACOCK L,REIG B,et al.Improving breast cancer diagnostics with deep learning for MRI[J].Sci Transl Med,2022,14(664):eabo4802.
[11]HAN Y C,WANG S B.Disability risk prediction model based on machine learning among Chinese healthy older adults:results from the China Health and Retirement Longitudinal Study[J].Front Public Health,2023,11:1271595.
[12]左文思,金林原,刘新桥,等.超声造影对不同年龄乳腺BI-RADS4a类肿块的诊断价值[J].中国超声医学杂志,2022,38(1):17-21.
[13] AVERY J C,DESLANDES A,FREGER S M,et al.Noninvasive diagnostic imaging for endometriosis part 1:a systematic review of recent developments in ultrasound,combination imaging,and artificial intelligence[J].Fertil Steril,2024,121(2):164-188.
[14]高文婧,张旭,李剑,等.乳腺导管内良恶性肿瘤超声图像特征的对比分析[J].临床超声医学杂志,2022,24(1):40-43.
[15]戴超超,颜红菊,张丽,等.超声特征、病理分型等对乳腺恶性肿瘤超声BI-RADS分类评估的影响[J].浙江医学,2020,42(13):1401-1403.
[16]KIM M J,SU M Y,YU H J,et al.US-localized diffuse optical tomography in breast cancer:comparison with pharmacokinetic parameters of DCE-MRI and with pathologic biomarkers[J].BMC Cancer,2016,16:50.
[17]盛伟华,黄松,李烨,等.DCE-MRI定量参数联合ADC值诊断前列腺癌的价值及与血清PSA的相关性分析[J].川北医学院学报,2020,35(3):461-464.
[18]赵霞,苑乐,张程,等.动态对比增强MRI定量灌注参数鉴别乳腺病灶良恶性的价值[J].临床放射学杂志,2022,41(5):834-838.
[19]ZHANG J,WANG L,LIU H F.Imaging features derived from dynamic contrast-enhanced magnetic resonance imaging to differentiate malignant from benign breast lesions:a systematic review and meta-analysis[J].J Comput Assist Tomogr,2022,46(3):383-391.
[20]ZHANG M,HE G Y,PAN C J,et al.Discrimination of benign and malignant breast lesions on dynamic contrast-enhanced magnetic resonance imaging using deep learning[J].J Cancer Res Ther,2023,19(6):1589-1596.
[21]LI P Y,GAO S L,WANG Y Q,et al.Utilising intraoperative respiratory dynamic features for developing and validating an explainable machine learning model for postoperative pulmonary complications[J].Br J Anaesth,2024,132(6):1315-1326.
[22]ZHAO Z J,HOU S Z,LI S,et al.Application of deep learning to reduce the rate of malignancy among BI-RADS 4A breast lesions based on ultrasonography[J].Ultrasound Med Biol,2022,48(11):2267-2275.
[23]杨红玲.超声综合评分法联合MRI对乳腺肿块良恶性的鉴别诊断价值[J].中国CT和MRI杂志,2020,18(8):69-72.
[24]YASIN P,LUAN H P,PENG C,et al.Development and validation of an interpretable nomogram for predicting the risk of the prolonged postoperative length of stay for tuberculous spondylitis:a novel approach for risk stratification[J].BMC Musculoskelet Disord,2025,26(1):539.
基本信息:
DOI:
中图分类号:TP181;R737.9;R445
引用信息:
[1]孙钰舒,孙福涛,王靖怡等.基于超声和动态对比增强MRI的机器学习算法构建良恶性乳腺肿瘤预测模型[J].影像诊断与介入放射学,2025,34(04):227-233.
基金信息:
山东省医药卫生科技计划项目(202109011104)